This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

SNWA's Cooling Tower Conservation Efforts

Kent Sovocool

Sr. Conservation Research Analyst

Roy Thomas Conservation Aide, CII Sector

Who are we?

SNWA addresses all aspects of Water Resources on a Regional Basis in S. NV

Water Smart business solutions

The Past

The Present

it's even lower now! And remember this is our primary supply!

Water Smart business solutions

Water Efficient Technologies Program -- W.E.T.

The SNWA provides incentives for customers to find their *own* creative solutions to conserve water.

New & Improved W.E.T. Program

- Program is designed to encourage capital improvements that can result in saving at least 250,000 gallons per year
- Maximum 50% of product cost. No maximum per property!
- Two Program Tracks:
 - Menu Item Select from a list of pre-approved technologies with assigned incentive values
 - Performance-based For custom conservation solutions (rebate contingent on performance)

The New and *Shocking* incentive levels . . .

W.E.T. incentive levels

Up to \$8.00 per 1,000 gallons
 conserved annually for non-consumptive
 water saving technologies (most *indoor*)
 i.e. Concentration Ratio improvements

Up to \$25 per 1,000 gallons
 conserved annually for consumptive
 water saving technologies (most *outdoor*)
 i.e. Drift Reduction and Fill Changes

Cooling Towers Program - Status

- To date we have developed relationships with more than 40 facilities.
- Average facility has 2630 tons of cooling capacity (range is 125 up to over 10,000 tons).
- Have collected data for over 100,000 tons total.

Cooling Tower Operation

Make-up Water Required **^{T**}

Make-up = Evaporation+(Bleed-off+Drift)

Concentration Ratio {CR} = Make-up/(Bleed + Drift)

T (Kobrick & Wilson: Conserve 1993)& Sandia Labs 2002

Cycles and Relationship to Water Usage **T**

CR=dissolved solids in bleed-off water / dis. solids in makeup water

% Conservation = [(CR2-CR1)/(CR1 X CR2-1)] X 100

Water Use vs Concentration Ratio (100 Tons Cooling)

Initial Balanced State CR = 1.82 @ Previous Equations **F** by: Aquacraft 2003 for CalFed **§** based upon Manufacturers (EVAPCO) Recommended Bleed of 3 GpM / 100 Tons

F (Kobrick & Wilson: Conserve 1993)& Sandia Labs 2002

Cooling Tower Calculations $^{\Theta}$

Cooling Tower Basics - per: Sandia Labs, June 2002				Blow Do	Blow Down WATER CONSERVATION for CR Changes:					
	Der 100	10 tone of Ca	nacity @ 25	Cycles		Tops of Can	acity	1000		
	Fei luc		pacity (22.5	Cycles		Tons of Cap	acity	1000		
Hot H2O In:			3000	anm			,	1000	1.00	
11011120111.			5000	gpin			(Evar	oration + Drift = :	1.00 31.5 apm) /1000 Tops a	l f Canacity
Evaporation		1.00%	30	anm		1	(L004) X	31.5	on o gpiny i rooo rono o	Capacity
Liaporation				30				(Evap. + Driff)	31.5	apm
Drift:		0.05%	1.5	apm		31.5	/			01
				01111		CR1 (Origin	al)	2.00	-1	
Blow Down:		0.80%	24	apm		(3	=		31.50	apm
				31					(Evan + Drift) / (CR1-1)) = BD #1
Make-Un:		1.85%	55.5	anm		31.5	/	,	(Loop: Dring) (Orth 1	,
mano op.		1.0070	00.0	36		CR2 (Propos	sed)	3.25	-1	
Cooled H2O	Out		3000	anm		0.000	=	0.20	14 NN	anm
				36					(Evan + Driff) / (CR2-1)) = BD #2
) 00 //2
<u>MakeUp=</u>	Evaporation	+ Drift +	Blowdown	=	1.85%	Water Savings	s: {B[)) #1 - BD #2}	17.50	gpm
	1.00%	0.05%	0.80%							
									1,050.00	gph
	Concentration	n Ratio (CR)	or Cycles of	Concentratio	n					
	C	R = Make-U	p/Blow Dow	n					25,200.00	gpd
Blow Down =	= (Evap. + Di	rift) / (CR-1)							176,400.00	gpw
% B I	ow Down or Cl	hemicals CON	ISERVED = (C	R2 - CR1)/(CF	82 - 1)		IF: 24 X 365	5	9,198,000.00	дру
						SAVINGS fa	ctored by Op	eration:	(66% Duty Cycle)	
						gph X	hr/day X	days/yr		
Make-Up = (lbs. Chemica	l used X 10to	6th)CR/			1,050.00	24	240	6,048,000.00	gpy
	(ppm dose ra	ate X chemica	al density{in l	bs. Per gallo	in})	1,050.00	24	49	1,234,800.00	
						1,050.00	22	86	1,986,600.00	
300 gpm of tower water circulating per 100 tons of cooling					1,050.00	18	98	1,852,200.00		
						1,050.00	12	83	1,045,800.00	
	2.5 to 3.0 gpm of Evaporation per 100 tons cooling					1,050.00	6	49	308,700.00	
{use 3.0 gpm / 100 tons for Southern Nevada area}					WEATHER :	Temp Curve	CYCLE (72%)	6,428,100.00	gpy	

Θ As adapted from Sandia 2002;
 See also NM State Engineers Water
 Conservation Guide for CII Users 1999

Avg. Makeup (SNWA) Water

WO Deservator	Valid N	Mean	Unit	Minimum	Maximum	Std.Dev.	Standard Error
wy Parameter							
Alkalinity	38	137.6	mg/L	127.0	165.0	9.3	1.5
Conductivity	38	1042.0	μS/cm	734.0	1340.0	101.4	16.5
pН	38	8.0		7.7	8.1	0.1	0.0
Silica	36	8.2	mg/L	7.3	12.0	1.0	0.2
TDS	38	648.5	mg/L	434.0	858.0	69.2	11.2
Temperature Deg. C	38	21.1	°C	11.9	23.9	2.5	0.4
Chloride	37	94.1	mg/L	44.0	130.0	14.4	2.4
Sulfate	36	254.5	mg/L	101.0	350.0	42.4	7.1
Magnesium	38	30.4	mg/L	25.0	98.0	11.5	1.9
Potassium	38	8.4	mg/L	4.0	101.0	15.7	2.5
Sodium	38	99.6	mg/L	43.0	320.0	40.6	6.6
Hardness (calc)	38	336.6	mg/L as CaCO₃	260.0	1100.0	130.3	21.1

Avg. Facilities Baseline in LV

LMUW vs Baseline

Different letters indicate that each series' mean values are statistically different (p<0.05) from each other for each WQ parameter

 $CR_{avg} = 2.22$

Typical Treatments for Maintenance $_{\Psi}$

Table 1. Conditioning Chemicals

Conditioning Chemicals	Use	Application	Recommended Maximum Concentration	
Organophosphates (phosphonates)	Control scaling	Continuous	20 mg/L as PO ₄	
Orthophosphates, polyphosphates	Inhibit corrosion and control scaling	hibit corrosion Continuous d control scaling		
Sodium Silicate	Inhibit corrosion	Continuous	150 mg/L as SiO ₂	
Aromatic azoles	Inhibit corrosion	Continuous	1-4 mg/L	
Molybdates ¹	Inhibit corrosion Tracer	Continuous	5-10 mg/L as molybdate	
Non-oxidizing biocides such as • Isothiazolin • Dinitriopropionamide • Quaternary amines	Inhibit biological growth	Slug	N/A	
Chlorine	Inhibit biological	Continuous or	0.5 mg/L	
Diomine	giuwiii	siug	0.2 mg/L	

 $\Psi \; (... \text{CoolingTowerBMP: JEA 2005})$

Typical Treatments for Maintenance

- Additional MakeUp water treatment(s)
 - Chemical Conditioning
 - Acidification
 - Side Stream Filtration

SNWA's Experiences

- The "Good"
 - All levels of management Accept Responsibility
- The "Bad"
 - Some levels of management fail...
- The "UGLY"
 - No One seemed to Value the Equipment!

» (Historically speaking)

SAVE MONEY SOUTHERN NEVADA WATER AUTHORITY Water Smart business solutions

The "Bad"

Water Smart business solutions

The 'UGLY' Tower...

Acid injection system

- Simple, established technology reengineered to almost continuously inject acid automatically to maintain an ideal pH to avoid both scaling and corrosion.
- Really just a highly developed extension of a typical treatment.
- Requires significant safety considerations and permitting.

Ozonation Ozone (O₃)

Model of an Ozone Molecule.

- Commonly produced
 when an electical
 discharge spits O₂ and one
 of the remaining O atoms
 binds with another oxygen
 pair
- Unstable (half-life = 10 minutes)
- Powerful biocide effects

Ozonation

- Causes immediate rupture of bacterial cells (no opportunity for immunity development).
- This is fast! 1000s of times faster than Cl.
- Removes biofilm (slime) too (just 0.1 mg/L will remove 70-80% in 3 hrs.)
- By removing biofilm, greatly reduce ability of scale to stick to surfaces and form deposits (BUT <u>DOES NOT</u>

IN-OF-ITSELF ELIMINATE SCALE DIRECTLY)

Caveats for Ozone Treatment

- Not for really hot water applications (>104°F basin H_2O).
- May or may not inhibit scale in any particular circumstance. Here in Southern Nevada probably does not eliminate use of chemicals for scale inhibition.
- ORP probe accuracy is crucial.
- Energy usage considerations.
- Corrosion considerations. Should use coupons.
- Not for high COD water

(ex. may not be for petroleum processing facilities).

- Can produce negative discharge products.
- Must be located near tower and have multiple exit ports in basin.

SNWA's Experiences – Advanced Control Technologies

- Go beyond simple TDS or pH. Typically have multiple sensors.
- HVAC Controls integrated with Total Building Control.
- CO₂ Sensors to predicatively manage tower loads.
- Fluorescent marked dispersal polymer – may allow a tower to go right to the "edge". (Real-time monitoring of system strain)

Tagged Dispersal Polymers*

Figure 2 — Generalized representation depicting online measurement of actives consumption (resulting from high system stress). In this case, consumption precedes performance problems.

* (Moriarty et al. 2001)

Drift Reduction

Drift Eliminator Section with Integrated Fill

- High-efficiency drift "elimination" technology.
- Unusual conservation initiative as most conservationists focus on reducing blow-down.
- But here in Southern Nevada it <u>reduces</u> our premium value <u>consumptive use water</u>.
- Drops drift losses to 0.005% of tower flow rate.

Drift Savings Calculations Θ

Water Efficient Technologies Cooling Tower Conservation

DRIFT: Per	1000 Ton	s Co	ooling Capacity #	#		(Assumed R	ecirculation for '	1000 T	ons	Сар	acity	is 300	30 GPN	1 of R	ecirculating Wate	er)
1	0.0000/	-	C 00	ODM												
initial:	0.200%	:	6.00	GPIVI												
						ESTIMATED SA	VINGS:									
STD ¹	0.050%	:	1,500	GPM												
		-		.		1.250		CDM	V	60	Min				01.0	Coll
						1.300		GEIW	<u> </u>	00	IVIIII				01.0	брп
Projected:	0.005%	10	0.150	GPM					X		24	Hr			1,944.0	GpD
									X			365	Davs		709.560.0	GPY
						709 560 000		CDV		nor			1000	Ton	•	
						103,300.000		GFT		per			1000	101	5	
Capacity:																
Xxxx	Tons		Total Nominal C	apaciti	v @	Y Tower Sets										
7	Tone	1	Tower Set	-r												
	TONS	<u> </u>	Tower Set													
Xxxx	Tons	1	1000	Tons												
	Xxxx	*	709 560	GPY	=		#/ALLEL									
Dut	. Easter (0	Diaut Land			700/	70 * 44 /01 UE	ODV (2							
Dut	y Factor /	AVE	erage Plant Load	(APL)		70%	.70 * #VALUE	GPT	Savir	igs						
									r –							
NOTES: ## '	"Drift Rate	es:"														
Initial:	l: le a generic rate for cooling towers in fair to noor condition															
CTD:	The Designment at the for exemption of the first state and the second second state and the second second state at the second second state at the second seco															
SID.	Rate is p	er, a	Sandia Labs, Jun	e 2002	2 - F	or towers in fair to	good condition	w pre	199	5 10	2000	раск	ing des	agns		
Projected:	jected: Is for newer packing designs that incorporate drift elimination or for separate drift eliminators; and varies per project															
	{Customer / Vendor to furnish Technical Documentation / Specifications to support Projected Drift Rate}															
Duty Factor / Average Plant Load (APL) Varies by Installation and Design - If Manufacturers Data is Unavailable; use 70%																

Θ As adapted from Sandia 2002;
 See also NM State Engineer's Water
 Conservation Guide for CII Users 1999

OR Go simple with Good, Independent Maintenance Service **u**

Table 2. Recommended Minimum Monitoring Schedule

Daily	 Visually inspect the equipment to verify that it is working properly. Check to see if chemical supply is adequate. Investigate anything which appears unusual or which may indicate changing conditions. Record the daily volumes of makeup and blow down water. Significant variations in the daily flow may be indicative of system malfunctions or changed conditions.
Weekly	Check pH and conductivity. Significant variation from normal may indicate malfunctions or changed conditions requiring further investigation and/or chemical feed rate adjustment.
Monthly	 Have a system expert: Inspect the system, checking for proper equipment functions and physical evidence of corrosion or fouling. Perform chemical testing on cooling system water to check water quality and report results and recommendations. Check conditioning chemical dosages and adjust feed rates.
Semi- annually or annually	Check and report corrosion rate.

Additional Maintenance Service Suggestions

- <u>Install a Sampling Station</u> work area w/ sink, log book, and storage near system controller. (A Diagrammatical 'backboard' is desirable too.)
- <u>Install / Maintain Trash Screens</u> over all exposed flow-areas of tower structure, to reduce nuisance objects becoming flow clogging devices and biological growth sites...
- <u>Shade Structures</u> over and <u>Louvers</u> around installation, control solar nuisance heat and scale deposition sites on outside of packing/fill media.
- <u>Cover exposed areas</u> to prevent direct sun exposure and its contribution to algal growth... I.e. Bottom of fill media and basin interface in Cross-Flow tower designs.

(One advantage of Counter-Flow tower designs is a shielded basin.)

Avg. Post-program Water Quality

(are we being effective?)

LMUW vs Baseline vs Final

Post Improvements CR_{avg} = 3.45

CR Improvements Observed (DRAFT)

<u>Measure</u>	<u>Start CR</u>	End CR	Improved
Acid Injection	2.33	3.91	1.58
Ozonation	2.15	3.17	1.02
Advanced Controls	1.85	3.25 – 4.5*	1.40
Improved Mgmt. Only	3.19	3.70	0.51 (at least?)

* Tagged Dispersal Polymer-based Control

Conclusions

- SNWA's efforts to facilitate improvements in the water efficiency of cooling towers appears to be successful.
- For those properties partnering with SNWA, CR has gone from 2.22 up to 3.45 (an improvement of 1.23).
- This represents an annual savings of approximately 673,760 gallons *for each 100 tons of cooling capacity*.
- For the average facility visited, this equates to an average savings of 17,718,414 gallons annually.
- This a 45% savings in blow-down water.

Conclusions

- Drift Reduction retrofits are a viable way to conserve valuable consumptive use water in Southern Nevada.
- Typically reduces drift from a starting loss of 0.2% to 0.05% of tower flow rate down to 0.005% to 0.001%.
- This represents an annual savings of approximately 70,960 gallons *for each 100 tons of cooling capacity*.
- For the average facility visited, this would equate to an average savings of 1,866,093 gallons annually.
- This is a reduction of 10x to 200x in drift losses.

Additional Future Directions

- More recapture and cleanup of onsite wastewater for use in cooling towers in industrial settings (ex. laundry facilities, bottling plant).
- Hybrid cooling towers to reduce evaporative demands.
- Ground source heat pumps used for "geocooling"! (School District is piloting).

Questions?

- Kent Sovocool
 - kent.sovocool@snwa.com
 - (702) 862-3738
- Roy Thomas
 - roy.thomas@snwa.com
 - (702) 862-3739
- Also see: <u>http://www.hpac.com</u>

